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GENERATRIX DISCONTINUITY 

0. M. Belotserkovskiy, Ye. S. Sedova, R. V. Shugayev 
(Moscow) 

The integral method of Vaglio-Laurin is used to 
solve the supersonic flow problem around spherical 
segments. It is shown that second and third order 
terms are unimportant. 

A calculation of supersonic flow around bodies with a generatrix /930* 
discontinuity is of great practical importance, since the presence of a 
discontinuity decreases the heat exchange close to the byeaking point for a 
given radius of curvature for the forward part. 
related to the occurrence of a singularity at the discontinuity point arise 
when calculating flow around bodies with a sonic discontinuity. The zone in 
which the flow turns around the corner point is located in the region of 
mixed flow. The flow turning is accompanied by a change in the flow 
velocity, both in terms of magnitude and direction. A "suspended" condensation 
jump may occur in the supersonic region around the lateral surface of the body. 
This article solves the problem of calculating the supersonic flow around blunt 
bodies with a discontinuity which determines the position of the sonic point 
on the body. Version I1 of the integral relationship method (Ref. 1) is 
investigated. This version employs the asymptotic solution of Vaglio- 
Laurin (Ref. 2), which has been refined and which leads to a form which is 
suitable for computer calculations. The results derived from calculating the 
flow around spherical segments (K = 1.4, M, = 10) are presented. 

However, additional difficulties 

The reverse problem of supersonic flow a romd .I body with a discontinuity 
was investigated in (Ref. 3 ) .  The study (Ref. 4) also presents certain 
results derived from calculating flow around bodies with a discontinuity 
according to the method advanced by G. F. Telenin. 

2. Let a supersonic current of ideal gas encounter an axisymmetric 
body at zero angle of attack. 
the flow reaches the local speed of sound at the discontinuity point, and the 
form of the body behind the discontinuity has no influence on the subsonic 
flow close to the leading section. We must find the solution in the region 
delineated by the body surface, the shock wave, the axis of symmetry, and 
the limiting characteristics. Closure of the integration region from above 
by the limiting characteristics enables us to make a correct determination 
of the influence of the region. 

We shall investigate the case when 

Let us introduce the coordinate system s, 5 = 1 - n/E(s), where E is 
the distance along the normal from the body surface to the shock wave. 
initial system of equations of gas dynamics consists of the equation of con- 
tinuity and the equations of motion written in a divergent form: 
* Numbers in the margin indicate pagination in the original foreign text. 

The 
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R i s  t h e  body r ad ius  of curva ture  a t  a n  a r b i t r a r y  p o i n t ;  8 - t h e  angle’  formed 
by t h e  tangent  t o  t h e  body p r o f i l e  and the  d i r e c t i o n  of t h e  incoming 
f low ; r - d i s t a n c e  from t h e  body axis of symmetry; u ,  v - v e l o c i t y  components 
i n  t h e  d i r e c t i o n  n, s ,  p e r t a i n i n g  t o  t h e  maximum v e l o c i t y  w * p - dens i ty  

p e r t a i n i n g  t o  d e n s i t y  of the incoming flow poo; p - pres su re  p e r t a i n i n g  t o  /931 
2.  

pmwmax ’ the l i n e a r  dimensions p e r t a i n  t o  the body r a d i u s  of curva tu re  a t  t h e  
c r i t i c a l  p o i n t .  

i max ’ 

Lm 

Y = i i (J+ ‘)/‘a, (C), 
f = O  

(2) 
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derivatives with respect to S ) :  
F" =- g', 

g" ==- '/'&, (21g - 2:,6g'),  

a, -= (78 - 5Cg') / 4, 

1 / n, = g' - 2 5 P /  16. 

The system of differential equations f o r  terms up to the third order are 
as follows: 

6,' = BI[BI + 1' sin 0. - G I  (EO' + 15 { / 16) 1, 
h' = B#/r Et (3 BO + 5 &') - 5 / I r  6(al + v sin e.)], 

Dz' = BI {5/4 SBa - &[vR ( x  + 1) 'la - Ez]), 

, 
Z z ' s  Br('/b { [ \*K(x+  I ) ' h - -  i i z ]  - B z ) ,  

I 

E,' = 5/,n1(r70iis + < R ~ ) ,  I 5 3 '  = -b'l(n, + "/1,,ir7~), 

(3) 

( 4 )  

where 

/932 

, " 4 - }  2 / (I' 1)111,?. I 

The quantity v = 0 or 1, respectively, for the plane and axisymmetric 
cases. 

If the equation for the body stirface in the subsonic regionhas the 
following form (Figure 1) 

I/ = 0 , 2 2  + ( 1 2 2 s  + * .  - .  
then the terms of the first order equal 

In the plane case (v 

the second and third 

E l  = 0, 
QJ QJ 

51 5 -v sin 0,. 

= 0) u3 = 0, v3 = 0. 

orders may be written as follows: 

Boundary conditions for terms of 

5 
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* (continued from page 2) 
5 = - 2 . 5 - 3 / ~ ~ ( l  - 5 )  -% 

where g'(1) = 0 in the case of C = 1, C - scale constant. 
QJ 125/56*2-'/5(-~)~/5 for 5 + 00, g QJ s3/3 - 675/96*10-1/3~1/3 in the case of 
' 5  + + m. 

<$<I,, 

I f  C = 1, then g QJ 
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Figure 2 

m I 

Figure 3 

a8 

m a- 

i - n  i - n  

i -~ n I ; - ~ "  

where yi (j) = yi(j)(Cy K, K, 0, )  , C - scale constant. It must be pointed out 
that terms ai, $i, i = 2k + 1, k = 0, 1, 2, . . . , are omitted in the solution 
presented in (Ref. 2), and the right hand sides of the differential equations 
for the terms beginning with the second order are not written correctly. The 
study (Ref. 6) presents the asymptotic expressions for U, V which correspond 
to the flow around the plane forward section (1/R = 0 for s < s* )  and 
corresponding to terms up to the second order. 

The solution of (2) makes it possible to determine all of the requisite 
gasodynamic parameters both for the plane and the axisymmetric cases in the 
vicinity of the sonic discontinuity, within an accuracy of the scale constant 
Cy for a specific form of the shock waves. 

4 .  Version I1 of the integral relationship method is employed to 
provide a numerical solution of the system (1) of the partial differential 
equations in the region 0 < 5 < C0 . In this method, the gasodynamic funtions 
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are approximated along s. The integration region is divided into bands by 
the lines s (E.) - equation of 
the boundary characteristics). As is customary, the polynomial approximation 
with respect to s is employed, with allowance for the fact that the values 
of the desired functions for s = 0 are included in the approximating system. 

= ksl (E.) / N, k = 1, 2, ..., N - 1 ( s  = s k 1 

In the vicinity of the corner, the field of flow may be calculated 
according to formulas (2) - ( 4 ) .  

The approxihating system contains N + 1 unknown parameter E 00' E 10' * * -  Y ... , cNO, where E 

E. = 0. One additional unknown parameter -- the scale constant C -- is containd 
in the solution of (2) .  
determined from N boundary conditions on the body: uo, u2, ..., % = 0, in 
the case of E. = 1 (ui - value on the intermediate line) and two "splicing" 
conditions at the point 6 = E. 
completely defined. 

- value of E(S)  at the intermediate points io 

In all, we have N + 2 unknown parameters, which are 

in the vicinity of the corner. The problem is 0 

The computational procedure is as follows. In the case of E. = 0, the 
initial values of the unknown functions are determined from the condition on 
the shock wave. 
"splicing" point, where 5 = 6,. 
system may be integrated concurrently with equations (2) - ( 4 ) ,  which describe 
transonic flow in the vicinity of the corner. In order to determine the un- 
known parameters, the method of the steepest descent is employed. The 
accuracy with which the boundary value problem is solved is determined by the 
maximum permissible error, which may be given in the following form 

After this, the approximating system is integrated up to the 
In the case of 6, < 5 < 1, the approximating /933 

( ( U o Z  + u*2 + . . . - U r f 2 ) E = ,  + [ ( P i  - U1, )Z  + ( V I  - ~ l " ) 2 I r - t " ) " ~  c 6 1 

0 are the values of the velocity components at the point E. hr' viv where u 

determined according to formula (2). 
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5. Let us present certain results derived from the calculations 
following the method indicated above (M, = 10, K = 1 . 4 ) .  

Figure 1 shows the form of the shock wave which is formed during flow 
around a spherical segment with the half opening of angle 43'30' and 33 ' .  
Figures 2-4 and the table present the velocity distribution on the axis of 
symmetry, the boundary characteristics s = s ( E , ) ,  and on the intermediate 

line s = s ( E , )  / 2  (the quantities are designated by the indices 0 ,  1, and 2, 

respectively) in the case of M, = 10, K = 1 . 4 .  
behavior of u on the boundary characteristics greatly depends on the segment 
half opening angle. Figure 5 shows the law governing the change in the 
shock wave departure E(S)  along the body. 

1 
1 

It may be seen that the 

As the calculational results show, an increase in the segment 
half opening angle leads to an increase in the scale constant C contained in the 
solution of (2) .  When the segment half opening angle corresponds to the position 
of the sonic point on the sphere, the scale constant becomes infinite -- i.e., 
the main term in (2) degenerates into the Prandtl-Meyer solution. 

The calculations were performed in the second approximation (N = 2) .  
A study of the algorithm of version I1 shows that the maximum error 
occurs at the boundary characteristics and does not exceed 2% in the case of 
N = 2 (we should note that the velocity components at the "splicing point of 
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the two solutions undergo a small discontinuity). The computational error 
on the axis and the mean line in the case of N = 2 comprises approximately 
0.5%. The calculations show that the use of two terms in the solution of 
(2) is sufficient when determining the flow in the vicinity of the cQrney. 
Terms of the second and third order have no significant influence. 
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